Akaike's An Information Criterion for gips
class
Arguments
- object
An object of class
gips
. Usually, a result of afind_MAP()
.- ...
Further arguments will be ignored.
- k
Numeric, the penalty per parameter to be used. The default
k = 2
is the classical AIC.
Value
AIC.gips()
returns calculated Akaike's An Information Criterion
When the multivariate normal model does not exist
(number_of_observations < n0
), it returns NULL
.
When the multivariate normal model cannot be reasonably approximated
(output of project_matrix()
is singular), it returns Inf
.
In both failure situations, shows a warning.
More information can be found in the Existence of likelihood
section of logLik.gips()
.
BIC.gips()
returns calculated
Schwarz's Bayesian Information Criterion.
Calculation details
For more details and used formulas, see
the Information Criterion - AIC and BIC section in
vignette("Theory", package = "gips")
or its
pkgdown page.
See also
AIC()
,BIC()
- Generic functions thisAIC.gips()
andBIC.gips()
extend.find_MAP()
- Usually, theAIC.gips()
andBIC.gips()
are called on the output offind_MAP()
.logLik.gips()
- Calculates the log-likelihood for thegips
object. An important part of the Information Criteria.
Examples
S <- matrix(c(
5.15, 2.05, 3.10, 1.99,
2.05, 5.09, 2.03, 3.07,
3.10, 2.03, 5.21, 1.97,
1.99, 3.07, 1.97, 5.13
), nrow = 4)
g <- gips(S, 14)
g_map <- find_MAP(g, optimizer = "brute_force")
#> ================================================================================
AIC(g) # 238
#> [1] 237.6098
AIC(g_map) # 224 < 238, so g_map is better than g according to AIC
#> [1] 223.6188
# ================================================================================
BIC(g) # 244
#> [1] 244.0004
BIC(g_map) # 226 < 244, so g_map is better than g according to BIC
#> [1] 225.536